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The present paper deals with parameter identification of aluminum honeycomb sandwich panels
with the assumption that they can be treated as orthotropic continua. Elastic constants and modal
damping ratios are considered as the identified parameters, and the basic equations of Timoshenko
beam theory are employed in this paper. The numerical identification problem of minimizing the
errors between the experimental and the analytical results leads to two optimization problems. We
introduce, as objective functions, an error function calculated by the natural frequencies and another
by the accelerances. Both non-linear optimization problems with constraints are solved by the
downhill simplex method including a penalty function. The density is obtained experimentally and
in the first optimization problem only the elastic constants are identified. For the second optimization
problem, both elastic constants and modal damping ratios are identified simultaneously. The
resulting parameters are applied to finite element analysis and the calculated time histories of
accelerations are compared with the experimental results to examine the validity of these identified
parameters.
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1. INTRODUCTION

Aluminum honeycomb sandwich panels have such superior characteristics in bending
stiffness and in spite of the light weight that they are used in many engineering applications,
such as automobiles, railways or aerospace vehicles. The Japanese Railway Company is
likely to consider their application for the vehicles of the next superexpress. To date,
various papers concerned with the characteristics of honeycomb sandwich panels have
been published [1–11]. Most of them have treated the buckling problems from the angle
of material strength by analysis of honeycomb cores [1–7]. However, although serious
vibration and noise problems can be anticipated to occur in such high speed vehicles as
aeroplanes or superexpress trains, several important vibration problems are still left
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Figure 1. The honeycomb sandwich panel.

unsettled [8–10]. This omission originates in the difficulty of applying a general material
test to these materials [11], since they do not always have isotropic structure and have the
characteristics of high bending rigidity but small shear rigidity in the direction of the
thickness. Available information about such properties as elastic constants and damping
coefficients is insufficient to investigate the dynamic response. Recently, engineers using
the finite element method (FEM) in their design or analysis have succeeded in obtaining
results for the dynamic characteristics. After selecting a proper finite element model, they
have to determine the material parameters, such as elastic constants, damping ratios and
so on, corresponding to the model. We need to develop adequate models of the material
and determine their parameters, so as to predict the dynamic response in particular
engineering applications of the new materials.

In this paper, we treat the flexural vibration of aluminum honeycomb sandwich panels
and identify the parameters. They are not isotropic and have regular but locally different
structures. However, we assume that they are orthotropic continuum bodies. The required
parameters for continuum bodies, elastic constants and modal damping ratios are
identified by analytical and experimental results simultaneously. In this paper, we treat an
aluminum honeycomb sandwich panel as an orthotropic Timoshenko beam and identify
the corresponding parameters by solving the least squares problems by a non-linear
optimization method, the downhill simplex method.

2. MATHEMATICAL MODEL

2.1.     

Generally, a honeycomb sandwich panel consists of hexagonal aluminum honeycomb
cores and two thin plates. In the panels used in this research, the plates are also aluminum.
A schematic view of an aluminum honeycomb sandwich panel is shown in Figure 1. The
aluminum honeycomb sandwich panels treated in this paper have two thicknesses, 0·03 m
and 0·06 m, and the dimensions of the constituent panels are shown in Table 1. One could
analyze it more exactly by considering the dynamics of each sandwich plate and each

T 1

Constitution of sandwich panel

Panel (1) Panel (2)

Thickness of panel, t (m) 0·03 0·06
Thickness of sandwich plate (m) 1·0×10−3 0·75×10−3

Thickness of hexagonal cell (m) 0·2×10−3 0·2×10−3

Dimension h (m) 2·25×10−2 3·45×10−2
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Figure 2. The co-ordinate system.

aluminum honeycomb core simultaneously. However, for simplicity, we treat this sandwich
panel as a continuum body when considering flexural vibration globally. As shown in
Figure 1, the core rows in the direction of the arrow are different from those in the
perpendicular direction. Therefore, we assume that the in-plane properties must be
different in the direction of the arrow in Figure 1 and in the normal direction. The
out-of-plane properties may well be different from the in-plane properties. Therefore, we
regard the aluminum honeycomb sandwich panel as an orthotropic material and introduce
a corresponding mathematical model.

2.2. – 

When we treat the mathematical model for flexural vibration of honeycomb sandwich
panels, we can take the co-ordinate system as shown in Figure 2. Putting the centre of
gravity at the origin, we take the inner plane as the xy–plane and the flexural direction
as the z-axis. Then we assume that both the directions of x and y coincide with each
principal axis of the material and assign the x direction to that of the arrow shown in
Figure 1. The panel has a thickness of t and the dimensions a× b. A plane stress state
is assumed in plate or beam theory. Therefore, putting the stress and strain vector as
follows

s= {sx sy txy tyz tzx}T,

o= {ox oy gxy gyz gzx}T,

we can express the stress–strain relation in an orthotropic plate as follows:

s=Eo, (1)

where E is the elasticity matrix for the orthotropic material, and is expressed as follows.

Ex nxyEy 0 0 0

nyxEx Ey 0 0 0
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G
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where nxyEy = nyxEx . Therefore, in flexural vibration problems of plate theory, the
following six elastic constants are essential:

Ex , Ey , nxy (or nyx ), Gxy , Gyz , Gzx .

Some flexural vibrations in engineering can be looked upon as those of beams. In the
special case in which the width is narrow compared to the length, we can treat the
phenomenon as a one-dimensional problem. Namely, when b is negligible compared to a,
we can give the stress–strain relation as follows:

sx =Exox , tzx =Gzxgzx . (3)

Therefore, in this circumstance only two elastic constants, Ex and Gzx , are necessary. On
the other hand, if a is small compared to b, we can treat the phenomenon as another
one-dimensional problem. Then, we can give the stress–strain relation as follows:

sy =Eyoy , tyz =Gyzgyz . (4)

and we can consider another pair of elastic constants Ey and Gyz .
In this paper, we consider a beam model related to equation (3) as a preliminary

investigation prior to examining a plate or a shell model.

2.3.    

As a mathematical model, we employ Timoshenko beam theory incuding rotational
inertia and shear deformation [12], since shearing deformation is likely to occur due to
lower shearing rigidity as compared with high bending rigidity in this material. As shown
in Figure 3, we denote the flexural displacement by w and the rotation of the cross-sectional
area by c. Then the equations of motion for the beam subjected to a concentrated force
f(t) at x= l1 are expressed as follows:

1

1x 0ExIz
1c

1x1− k'GzxA01w
1x

+c1− rIz
12c

1t2 =0,

1

1x 6k'GzxA01w
1x

+c17− rA
12w
1t2 + f(t)d(x− l1)=0, (5)

where A= bt is a cross-sectional area and Iz = bt3/12 is a secondary moment of inertia.
k' denotes the shear coefficient in the Timoshenko beam determined by the cross-sectional
shape, and we use the value 2/3, which Timoshenko calculated for the rectangular section
[13]. d(x) is the Dirac delta function to express the concentrated force. As we carry out
the experiments with free boundary conditions, we can put the boundary conditions at
x=2a/2 as follows:

ExIz
1c

1x
=0, k'GzxA01w

1x
+c1=0. (6)

Figure 3. The co-ordinate system for the beam model.
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These conditions denote that both the moment and the shear force are zero at both ends
of the beam. Then if we consider Ex , Iz , Gzx and A as independent of x, and the force f(t)
does not act on the beam, we can put general solutions for the mth mode of the normal
mode as follows:

w= c1 elmx ejvmt =Wm (x) ejvmt,

c= c2 elmx ejvmt =Cm (x) ejvmt, (7)

where c1 and c2 are arbitrary constants, j is the imaginary unit, and lm and vm are,
respectively, the mth characteristic root and the natural angular frequency. Wm (x) and
Cm (x) are the mth normal mode function for the motions w and c. Substituting equation
(7) into equation (5) leads to the characteristic equation for lm . When we solve it, we can
obtain the characteristic roots as follows:

l2
m =

1
2ExIz 6−v2

m0rIz +
rAExIz

k'GzxA12Xv4
m0rIz −

rAExIz

k'GzxA1
2

+4ExIzrAv2
m7. (8)

The above roots depend on an inequality relation between the first and second terms in
equation (8); that is, whether or not, the following inequality holds:

1−
rIz

k'GzxA
v2

m e 0. (9)

When the above inequality holds, the characteristic root lm takes two real and two
imaginary values, and there are four imaginary values when it does not. When equation
(9) is true, the general solutions are expressed as follows:

Wm (x)= c1m cos amx+ c2m sin amx+ c3m cosh bmx+ c4m sinh bmx,

Cm (x)=0am −
rAv2

m

k'GzxAam1c1m sin amx−0am −
rAv2

m

k'GzxAam1c2m cos amx

−0bm +
rAv2

m

k'GzxAbm1c3m sinh bmx−0bm +
rAv2

m

k'GzxAbm1c4m cosh bmx, (10)

where the characteristic roots are put as lm =2jam and 2bm . Applying the boundary
conditions, we can obtain the following frequency equation when the inequality holds in
condition (9):

60a2
m −

rAv2
m

k'GzxA1 cos
aml
2

am sinh
bml
2

+0b2
m +

rAv2
m

k'GzxA1 cosh
bml
2

bm sin
aml
2 7

×60a2
m −

rAv2
m

k'GzxA1 sin
aml
2

am cosh
bml
2

−0b2
m +

rAv2
m

k'GzxA1 sinh
bml
2

bm cos
aml
2 7=0. (11)

Generally, equations (8) and (11) are functions of characteristics roots lm and natural
angular frequencies vm , and we can use these equations to obtain the natural frequencies
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and modes. On the other hand, when we have information about eigenvalue characteristics,
we can look upon them as functions of the longitudinal elastic constant Ex and the shear
elastic constant Gzx .

To calculate the dynamic response, especially the accelerance, we introduce the normal
mode approach. We assume that we can express c and w respectively in normal mode series
as follows:

c= s
a

m=−1

Cm (x)am (t), w= s
a

m=−1

Wm (x)am (t), (12)

where m=−1 and m=0 correspond to the rigid motions of translation and rotation,
respectively, with zero frequency and these result from the free boundary conditions.
Substituting equation (12) into equation (5), we have the following equations:

s
a

m=−1 $ d
dx 6ExIz

dCm (x)
dx 7am (t)− k'GzxA6dWm (x)

dx
+Cm (x)7am (t)− rIzCm (x)äm (t)%=0,

s
a

m=−1 $ d
dx 6k'GzxA6dWm (x)

dx
+Cm (x)71am (t)− rAWm (x)äm (t)%+ f(x)d(x− l1)=0,

where (
.
) implies partial differentiation with respect to time. Multiplying these equations

by Cs (x) and Ws (x) (s=−1, 0, . . .) respectively and integrating the products over the
length of the beam, we obtain

gx

s
a

m=−1 $0 d
dx 6ExIz

dCm (x)
dx 7Cs (x)− k'GzxA6dWm (x)

dx
+Cm (x)7Cs (x)1am (t)

− rIzCm (x)Cs (x)äm (t)] dx=0,

gx

s
a

m=−1 $ d
dx 0k'GzxA6dWm (x)

dx
+Cm (x)71Ws (x)am (t)− rAWm (x)Ws (x)äm (t)%dx

+ f(t)Ws (l1)=0. (13)

Adding the first eqution to the second in equation (13), we obtain the following relation:

gx

s
a

m=−1 $0 d
dx 6ExIz

dCm (x)
dx 7Cs (x)− k'GzxA6dWm (x)

dx
+Cm (x)7Cs (x)

+
d
dx 0k'GzxA6dWm (x)

dx
+Cm (x)71Ws (x)1am (t)

− {rIzCm (x)Cs (x)+ rAWm (x)Ws (x)}äm (t)] dx+ f(t)Ws (l1)=0. (14)
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Each normal mode function in Timoshenko beam theory has the following orthogonal
properties:

gx

{rIzCm (x)Cs (x)+ rAv2
mWm (x)Ws (x)} dx=0 (m$ s) (15)

gx $ d
dx 6ExIz

dCm (x)
dx 7− k'GzxA6dWm (x)

dx
+Cm (x)77Cs (x)

+
d
dx $k'GzxA6dWm (x)

dx
+Cm (x)7%Ws (x)%dx=0 (m$ s) (16)

gx $0 d
dx 6ExIz

dCm (x)
dx 1− k'GzxA6dWm (x)

dx
+Cm (x)71Cm (x)

+
d
dx 0k'GzxA6dWm (x)

dx
+Cm (x)71Wm (x)%dx

+v2
m gx

{rIzCm (x)2 + rAWm (x)2} dx=0 (m= s). (17)

When we define the magnitude of the normal mode functions as follows,

gx

{rIzCm (x)2 + rAWm (x)2} dx=1, (18)

we obtain a system of uncoupled equations as follows:

äm (t)+v2
mam (t)=Wm (l1)f(t) (m=−1, 0, 1, 2, . . .). (19)

Moreover, we need to choose a damping property to treat practical vibrations. In this
paper, we define the modal damping ratio zm and assume that the equations of motion in
the modal space are expressed as follows:

äm (t)+2zmvmȧm (t)+v2
mam (t)=Wm (l1)f(t) (m=−1, 0, 1, 2, . . .). (20)

As we can calculate the responses of each mode by equation (20), we can obtain the
physical responses for flexural displacement w and rotatory displacement c by modal
superposition in equation (12).

We consider the response at x= lx when we excite the beam at x= l1 by an impact
hammer. Applying the Fourier transform to equation (20) and considering superposition
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of each vibration mode, we can obtain the frequency response function, which we call the
accelerance, G( f ), as follows:

W� (lx , jv)
F(jv)

=− s
a

m=−1

Wm (l1)Wm (lx )v2

v2
m +2jzmvmv−v2

= − s
a

m=−1

Wm (l1)Wm (lx )v2(v2
m −v2 −2jzmvmv)

(v2
m −v2 +2jzmvmv)(v2

m −v2 +2jzmvmv)

=− s
a

m= −1

Wm (l1)Wm (lx )v2

(v2
m −v2)2 +4z2

mv2
mv2 (v2

m −v2 −2jzmvmv)0G( f ), (21)

where v(=2pf) denotes the angular frequency in Fourier transform and W� (lx , jv) and
F(l1, jv) are the respective Fourier transforms of the acceleration ẅ(lx , t) at x= lx and the
input force f(t) at x= l1. Generally, an accelerance depends on input point l1, output point
lx and frequency f, but we express it as a simplified function of only frequency here. On
the other hand, if we could obtain the frequency response, we could regard equation (21)
as the function of Ex , Gzx and zm (m=−1, 0, 1, 2, . . . , M).

2.4.  

Now assuming that the dimensions and mass are known, we consider two non-linear
optimization problems to obtain model parameters. First, we regard the resonance
frequencies in the accelerance as the natural frequencies and we seek values for the elastic
constants that will provide best agreement between the natural frequencies obtained by
experimental measurements and by the numerical model. We do not include the rigid
modes, m=−1, 0, since their frequencies are zero and independent of the elastic
constants. Now, letting the experimentally obtained natural frequencies be f (m)

exp

(m=1, 2, . . . , M) and those obtained analytically from equation (8) and (11) be f (m)
cal

(m=1, 2, . . . , M), we define the error function Error(Ex , Gzx ) as follows:

Error(Ex , Gzx )=
1
M

s
M

m=1

{f (m)
exp. − f (m)

cal.}2

{f (m)
exp.}2 (22)

Second, we formulate identification of model parameters by the accelerance, especially the
frequencies and the magnitudes at the resonance points. Calculating equation (21) with
the assumption of the values of Ex , Gzx and zm (m=−1, 0, 1, 2, . . . ), we can calculate the
frequency response. Therefore we can obtain the frequencies and the magnitudes
(f (m)

cal. , G(f (m)
cal.)) at the resonance points. Employing the resonance points (f (m)

exp., G(f (m)
exp.))

(m=1, 2, . . . , M) experimentally obtained, except for the rigid modes, we define the error
function Error(Ex , Gzx , z1, z2, . . . , zM ) (m=1, 2, . . . , M) as follows:

Error(Ex , Gzx , z1, z2, . . . , zM )=Wf s
M

m=1

{f (m)
exp. − f (m)

cal.}2

{f (m)
exp.}2

+WG s
M

m=1

{G(f (m)
exp −G(f (m)

cal )}2

{G(f (m)
exp )}2 , (23)
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T 2

Mass of materials

Test piece Dimension (m×m×m) Mass (kg)

1 0·1×0·1×0·03t 6·862×10−2

2 0·1×0·1×0·03t 6·755×10−2

3 0·1×0·1×0·03t 6·750×10−2

4 0·1×0·1×0·06t 6·897×10−2

5 0·1×0·1×0·06t 7·120×10−2

6 0·1×0·1×0·06t 6·863×10−2

where Wf and WG are the weights to adjust the difference of orders between the first and
the second term on the rightside of equation (23), the relative values of Wf and WG being
chosen to give a reasonable compromise between the fit to the resonance frequencies and
that to the magnitudes.

We can now formulate the identification problem as an optimization problem, i.e.,
identification of elastic constants that minimize the error function (22),

Minimize Error(Ex , Gzx )e 0,

Ex q 0, Gzx q 0, (24)

and that of elastic constants and modal damping ratios that minimize the error function
(23)

Minimize Error(Ex , Gzx , z1, z2, . . . , zM )e 0,

Ex q 0, Gzx q 0,

0E zm Q 1/z2 (m=1, 2, . . . , M), (25)

where the fourth constraint for modal damping ratios is necessary for the existence of the
resonances. In the calculation of the error function (22), we have to solve the characteristic
roots (8) and the frequency equation (11). In the calculation of the error function (23),
we also have to use equation (21). These procedures require the solution of the
simultaneous non-linear equations and it would be very tedious to express the derivatives
of the independent variables explicitly. Therefore, we decide to use a non-linear
optimization method not requiring derivatives, the downhill simplex method [14, 15].
Additionally, we apply a penalty function to this method [16] to enforce the required ranges
of the parameters.

3. PARAMETER IDENTIFICATION

3.1.   

When we discuss the dynamic response, the inertia terms play an important role in the
motion and we have to determine such parameters as the mass and moment of inertia in
rigid body motion. Although the material in this paper has non-uniform structure locally,
we assume that we can treat it as a continuum in the dynamic responses and the
representative property is a density r. In particular, when we consider such flexural models
as a plate and a beam, we can define the mass per unit area rt in plate theory and the
mass per unit length rbt.

We could evaluate the density from the geometry because the sandwich panels in this
paper are made from aluminium material and it has regular structure. However, we



.   .280

T 3

Dimensions of materials

Test piece Dimensions (a× b× t)

1 0·8×0·1×0·03t
2 0·8×0·2×0·03t
3 0·8×0·1×0·06t
4 0·8×0·2×0·06t

measure the dimensions and the weight for various test pieces experimentally and calculate
the density. The dimensions and the corrresponding weights for six 0·1 m×0·1 m test pieces
are shown in Table 2. It is found that all of them have the nearly equal weight regardless
of the thickness. Therefore, we take the mass per unit area rt as the inertia parameter and
determine the following value on the average:

rt=6·880 kg/m2.

3.2.  -

Before identification, we carry out impact testing on four pieces, the dimensions of which
are shown in Table 3. A schematic view of the experimental apparatus is shown in Figure
4. To simulate the freely supported boundary conditions, we hang each beam on two lines
glued to the beam.

We excite the beam using a small impact hammer and we detect the dynamic response
by an accelerometer attached to the beam. The signal is amplified and subjected to a Fast
Fourier Transformation (FFT) Analyzer. The data set is transferred to the personal
computer through a floppy disk and the required values are obtained. In discrete Fourier
transformation, we use the Hanning window as the window function [17].

Figure 4. The scheme of the experimental set-up.

T 4

Identified Ex and Gzx

Test piece
ZXXXXXXXXXXXXXCXXXXXXXXXXXXXV

1 2 3 4

Ex (Pa) 1·070×1010 1·095×1010 4·876×109 4·849×109

Gzx (Pa) 5·363×108 5·470×108 2·980×108 3·029×108



    281

T 5

Comparison of natural frequencies (Part 1) (a=0.8 m, b=0.1 m, t=0.03 m)

Mode no. Experiment Hz Calculation Hz

0 0·0 0·0
1 321·3 321·4
2 837·5 837·6
3 1520·0 1522·5
4 2312·5 2306·1
5 3150·0 3141·7
6 3987·5 4000·4

3.3.    

At first, we determine the elastic constants Ex and Gzx based on the optimization problem
of equation (24) so that we can minimize the difference between the experimental and
calculated natural frequencies. We adopt six and four elastic modes respectively for the
thickness of 0·03 m and 0·06 m in the identification. The obtained elastic constants for the
four beams are shown in Table 4. The identified values for the test piece with the same
thickness should be equal to each other, since the natural frequencies in the beam model
are independent of the width and all test pieces have the same length. As shown in Table 4,
the results for the same thickness give nearly equal elastic constants. In Tables 5–8 are
shown the comparison of the experimental frequencies with the natural frequencies
calculated by equations (8) and (11) with the identified elastic constants. Both sets of results
are so identical that these identifications based on Timoshenko theory are valid for test
pieces that have the dimensions shown in Table 3.

T 6

Comparison of natural frequencies (Part 2) (a=0.8 m, b=0.2 m, t=0.03 m)

Mode no. Experiment Hz Calculation Hz

0 0·0 0·0
1 322·5 325·1
2 842·5 847·0
3 1555·0 1539·4
4 2362·0 2331·3
5 3212·5 3175·5
6 3962·5 4043·0

T 7

Comparison of natural frequencies (Part 3) (a=0.8 m, b=0.1 m, t=0.06 m)

Mode no. Experiment Hz Calculation Hz

0 0·0 0·0
1 582·5 582·9
2 1385·0 1381·8
3 2287·5 2294·2
4 3225·0 3221·0
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T 8

Comparison of natural frequencies (Part 4) (a=0.8 m, b=0.2 m, t=0.06 m)

Mode no. Experiment Hz Calculation Hz

0 0·0 0·0
1 580·0 582·4
2 1395·0 1383·1
3 2287·5 2300·7
4 3237·5 3234·7

3.4.     

Secondly, we identify the elastic constants Ex and Gzx and the modal damping ratio zm

simultaneously by equation (25) as the second optimization problem. Then both the
difference in the resonance frequencies and the magnitudes in the experimental and
calculated accelerances can be minimized. We adopt six and four resonance points in the
accelerances respectively for the thicknesses of 0·03 m and 0·06 m and put the weights Wf

as 0·1 and WG as 104 in the evaluation of the function values. When we calculate the
accelerance, we put z−1 = z0 =0·0. However, as previously mentioned, rigid body motions
are not considered in the parameter identification.

The identified elastic constants and modal damping ratios are shown in Table 9. Also
in this identification we can obtain similar elastic constants for test pieces with the same
thickness, and they are nearly equal to the identified values in the previous section. In
Figures 5–8 are shown the comparisons of the experimental accelerances with the
accelerances calculated by the identified parameters. As both sets of results agree with each
other, we can say that these identifications are valid.

3.5.   

Using the identified parameters, we calculate the acceleration time history for impact
excitation by FEM and examine the application of identified results for FEM. To reduce
error in modelling, we introduce the Timoshenko beam element as a finite element and
construct the mass matrix M and stiffness matrix K [18]. Then we can express the equations
of motion for the undamped system as follows:

Mẍ+Kx= f, (26)

T 9

Identified Ex , Gzx and zm

Test piece
ZXXXXXXXXXXXXXXCXXXXXXXXXXXXXXV

1 2 3 4
Ex (Pa) 1·067×1010 1·085×1010 4·954×109 4·974×109

Gzx (Pa) 5·304×108 5·390×108 2·922×108 3·013×108

m=1 2·364×10−3 1·582×10−3 2·646×10−3 4·974×10−3

m=2 1·306×10−3 1·271×10−3 5·509×10−5 5·465×10−4

m=3 1·108×10−3 3·228×10−3 4·473×10−3 1·816×10−3

zm m=4 2·251×10−3 2·287×10−3 5·361×10−3 8·814×10−3

m=5 5·485×10−3 4·403×10−3 — —
m=6 4·488×10−3 2·510×10−3 — —
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Figure 5. Comparison of the experimental accelerance with the accelerance calculated by the identified
parameters: a=0·8 m, b=0·1 m, t=0·03 m. ——, Experiment; – – – –, calculation.

where x is the vector of modal displacements and f is that of external force. Using the
matrix T consisting of eigenvectors for this system, we can orthogonalize equation (26)
and realize reduction in the modal domain [19]. Namely, putting x=Ty and multiplying
on the left by TT, the transpose of T, we can reduce the problem in the physical domain
to that in the modal domain. Moreover, assuming that we can orthogonalize the damping
matrix C by the system eigenvector in order to use the identified modal damping ratios,

Figure 6. Comparison of the experimental accelerance with the accelerance calculated by the identified
parameters: a=0·8 m, b=0·2 m, t=0·03 m. ——, Experiment; – – – –, calculation.

Figure 7. Comparison of the experimental accelerance with the accelerance calculated by the identified
parameters: a=0·8 m, b=0·1 m, t=0·06 m. ——, Experiment; – – – –, Calculation.
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Figure 8. Comparison of the experimental accelerance with the accelerance calculated by the identified
parameters: a=0·8 m, b=0·2 m, t=0·06 m. ——, Experiment, – – – –, calculation.

we obtain the damping equations of motion with the modal damping ratios zm in the modal
domain as follows:

ÿ+Lẏ+Vy= f' (27)

where f'=TTf,
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vm (m=−1, 0, 1, . . . , M) denotes the natural angular frequencies obtained by eigenvalue
analysis. By the relation of x=T−1y, we can tranform the responses in the modal domain

Figure 9. Comparison of the experimental results with those by FEM: a=0·8 m, b=0·1 m, t=0·03 m. ——,
Experiment; – – – –, FEM. (a) Time history of impact force; (b) time history of acceleration.
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Figure 10. Comparison of the experimental results with those by FEM: a=0·8 m, b=0·2 m, t=0·03 m. ——,
Experiment; – – – –, FEM. (a) Time history of impact force; (b) time history of acceleration.

to those in the physical domain and obtain the equations of motion in the physical domain
as follows:

Mẍ+Cẋ+Kx= f. (28)

After performing an eigenvalue analysis using the identified elastic constants, the numerical
integration of equation (27) is carried out by the Runge–Kutta method. The elastic
constants used are the results for the width of 0·1 m, since the material with the narrower
width is expected to be closer to the beam model. Namely, we use Ex =1·067×1010 Pa

and Gzx =5·304×108 Pa for the thickness of t=0·03 m and Ex =4·954×109 Pa and
Gzx =2·922×108 Pa for the thickness of t=0·06 m. For the damping ratios, we use the

Figure 11. Comparison of the experimental results with those by FEM: a=0·8 m, b=0·1 m, t=0·06 m. ——,
Experiment; – – – –, FEM. (a) Time history of impact force; (b) time history of acceleration.
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Figure 12. Comparison of the experimental results with those by FEM: a=0·8 m, b=0·2 m, t=0·06 m. ——,
Experiment; ––––, FEM. (a) Time history of impact force; (b) time history of acceleration.

corresponding experimental values for each case. Moreover, we use the experimental
digital data for the input forces directly by the introduction of interpolation. In Figures
9–12 are shown the time histories of the excited impact forces and the resulting
accelerations for the four materials shown in Table 3. Solid lines express the experimental
results and dotted lines express the calculation results. In all results, the excited point is
x=−0·3 m and the observed point is x=0·3 m. The results calculated by FEM agree
with the experimental results well. Therefore, the identified values based on this method
can be used for FEM analysis.

4. CONCLUSIONS

In the parameter identification of aluminum honeycomb sandwich panels, an
orthotropic Timoshenko beam model has been used, and the elastic constants and the
modal damping ratios so as to minimize the error between the experimental and analytical
results have been determined. The results identified have been applied to FEM. The
conclusions can be summarized as follows:

(1) The use of the orthotropic Timoshenko beam is available for the identification of
aluminum honeycomb sandwich panels.

(2) Two optimization problems based on the natural frequencies and the accelerances
are effective for the parameter identification of aluminum honeycomb sandwich panels.
The elastic constants can be easily identified by the experimental and analytical natural
frequencies.

(3) The parameters identified by these method can be applied to FEM analysis of the
aluminum honeycomb sandwich panels.
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